
International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

An Efficient and Simplest Algorithm for
Generating Diagrams
Tabinda Sarwar, Uzma Arif, Wajiha Habib Samana Zehra

Abstract—Whenever a system is to be designed and modeled, diagrams play a key role in the context. As diagrams enable us
to understand, visualize and communicate concepts without ambiguity. Thus for the purpose many diagramming softwares are
available. Different softwares uses different methodology for design and development but with the time the design is becoming
complicated day by day and with the increased complexity also increases the learning time for the users. In contrast, software
based on easy algorithm is easily understandable by the user. This paper presents a simple and efficient algorithm for designing
“Diagram Generator” software (DG). The algorithm will describe the methodology for generating graphical shapes, which can be
combined to produce diagrams like Flowchart, Block diagrams, Organizational charts, Data Flow diagrams, Entity-Relationship
diagrams and many more.

Index Terms— Link Lists, Flow Charts, Organizational Chart, ER diagrams, Block diagrams, Click and Draw.

—————————— ——————————

1 INTRODUCTION
IAGRAMS, a two dimensional geometric symbolic
representation of information according to some
visualization technique [1], play a significant role in

analysis and design of a system. Diagrams are an excel-
lent means of communicating and clarifying customer
requirements, to avoid misinterpretations and ambigui-
ties.
 Diagrams also help in designing and visualizing the
target system to be developed (system architectures for
instance). Examples of commonly used diagrams are flow
charts, block diagrams, organizational chart, network
diagrams, Entity-Relationship diagrams, bar chart, pie
chart, graphs and UML (Unified Modeling Language)
diagrams [2].
 In today’s age, different diagrams have different usa-
bility. For example, Entity Relationship diagrams is by
far the most common way to express the analytical result
of an early stage in the construction of a new database [3],
Flowcharts are used in analyzing, designing, document-
ing or managing a program or process [4]. Because of the
frequent use and significance of diagrams in various
fields, different softwares are available and still more
softwares are being developed but due to the complex
design the usability of the software for the novice user is
low.
 A survey was conducted in University of Engineering
and Technology Taxila, Pakistan according to which the
most commonly used software for diagram generation
process is “Paint”. So in this paper, a simple and efficient
algorithm is represented, from developer’s point of view,
which will generate Flow charts, Block Diagram, Organi-
zational charts and ER diagrams. The algorithm can be
extended to include more graphical shapes to accommo-
date more diagrams.

2 IMPLEMENTATION COSIDERATION

2.1 Link Lists
 For representing the graphical object a very simple
approach is used. As every programming language sup-
ports “Rectangle”, so a “Rectangle” will be used to derive
more graphical shapes (instead of line that will be used
for connecting graphical objects). So at the back end each
shape will be saved as rectangle instead of line, for which
start and end point will be saved.
To keep track of all the graphical objects a link list is
created. The link list stores the following attributes:

 The Graphical object/shape
o For all graphical objects except line, rec-

tangle is saved
o For line its start and end points are

saved
 Text related to the graphical shape
 Next element (graphical object/shape) of the list
 Preview element (graphical object/shape) of the

list
 Other formatting information (e.g. color, font

style, size)

2.2 Building Blocks of Diagrams, Graphical Objects
 Following lists elaborate the graphical shapes which
are derived from rectangle

 Rectangle will be used as it is (e.g. rectangle
represents a “block” in Block diagrams)

 Parallelogram is generated by connecting the fol-
lowing points generated from a rectangle “rc”

o Point1 = rc.X, rc.Y (where rc.X and rc.Y
are the x and y-coordinates of the upper
left corner of “rc”)

o Point2 = rc.X + rc.Width – (integer that

D

International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

represents the slope for parallelogram
sides), rc.Y (where rc.Width is the width
of “rc”)

o Point3 = rc.X + rc.Width, rc.Y
+rc.Height (where rc.Height is the
height of “rc”)

o Point4 = rectangle.X + (integer that
represents the slope for parallelogram
sides), rectangle.Y + rectangle.Height

 Ellipse is easily generated by specifying the rec-
tangle without any further computation, as el-
lipse is drawn within the rectangle

 Diamond is generted by connecting the points
Point11, Point12, Point13, point14 and Point11
respectively.These points are derived from rec-
tangle “rc”

o Point1 = rc.X, rc.Y
o Point2 =rc.Left (where Left is the x-

coordinate of left edge of “rc”),
rc.Bottom (where Bottom is the sum of
rc.Y and rc.Height)

o Point3 =rc.Right (where right is the sum
of rc.X and rc.Width), rc.Bottom

o Point4 =rc.Right, rc.Top (where Top is
the Y-coordinate of top edge of “rc”)

o Point11.X = (Point1.X + Point4.X) / 2
o Point11.Y = (Point1.Y + Point4.Y) / 2
o Point12.X = (Point1.X + Point2.X) / 2
o Point12.Y = (Point1.Y + point2.Y) / 2
o Point13.X = (Point2.X + Point3.X) / 2
o Point13.Y = (Point2.Y + Point3.Y) / 2
o Point14.X = (Point3.X + Point4.X) / 2
o Point14.Y = (Point3.Y + Point4.Y) / 2

 Similarly other graphical shapes can also be generated
by comuting points from rectangle.

 Line is generated by using two points, starting
point “start” and ending point “end”.

2.3 Figures Tracker of Graphical Object for
Resizing/Editing

 Editing and resizing the graphical shape is also simpli-
fied, as the basic rectangle will be used as a tracker for all
graphical objects except line. Each graphical object is
saved as rectangle “rc” using which the trackers are cal-
culated.

 8 rectangles are created, top_Right,
top_Left,top_Center, bottom_Center, bot-
tom_Left, bottom_Right, center_Right and cen-
ter_Left with initial value=null

 The “rc” is retrieved from the link list
 The rectangles are created of size=5 and its posi-

tion (x, y) are found as follows: top_Left =
(rc.X,rc.Y) where “rc.X” and “rc.Y” is the X and
Y-coordinates of node “rc” respectively

 top_Center =(rc.X + (rc.Width / 2), rc.Y)
where “rc.Width” is the width of “rc”

 top_Right = (rc.X + rc.Width, rc.Y)
 center_Left =(rc.X , rc.Y + (rc.Height / 2))

where “rc.Height” is the height of “rc”
 center_Right =(rc.X + rc.Width, rc.Y +

(rc.Height / 2))
 bottom_Left = (rc.X , rc.Y + rc.Height)
 bottom_Center =(rc.X + (rc.Width / 2),

rc.Y + rc.Height)
 bottom_Right =(rc.X + rc.Width, rc.Y +

rc.Height)

 These eight points will be used for resizing the respec-
tive sides.
 The tracker for line is different from the rectangle. The
line is saved as two points in link list, starting point “ls” and
ending “le”

 2 rectangles are created, Right and Left with initial
value=null

 “ls” and “le” are retrieved from link list
 The rectangles are created of size=5 and its position

(x, y) are found as follows:
o Left = (ls.X, ls.Y) where “ls.X” and “ls.Y”

is the X and Y-coordinates of starting point
“ls” of line respectively

o Right = (le.X, le.Y) where “le.X” and
“le.Y” is the X and Y-coordinates of
ending point “le” of line respectively

2.4 Copyright Form Generating Diagrams by using
Click and Draw Methodology:

 Three modes are used in diagram generation process;
NONE when the software is idle, doing nothing, DRAW
when the graphical object is to be drawn and SELECT
when the drawn graphical object is to be edited. Figure 1
represents the algorithm when the graphical object is to
be drawn in a bitmap image “DrawingImage”.

2.5 Editing/Resizing Graphical Objects:
 FindSelectNode() function used in Figure 2 works in
a way that if the point belongs to the graphical object then
it is selected.
For inserting text inside the graphical objects algorithm
described in Figure 3 is followed.

International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

2.6 Figures:

Figure 1: Algorithm for Graphical Object Creation

Figure 2: Algorithm for Resizing/Editing Graphical Objects

International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Figure 3: Algorithm for Editing Text of a Graphical Object

3 SUMMARY
 Algorithm for DG software is the simplest and effi-
cient algorithm that can be extended for any type of dia-
grams ranging from simple flowcharts to complex UML
diagrams. The algorithm discusses the methodology for
representing, generating, editing/resizing and maintain-

ing the graphical objects.

REFERENCES
[1] “Stanford Encyclopedia of Philosophy,”

 http://plato.stanford.edu/entries/diagrams/, April 2011.
[2] “Wikipedia, the free encyclopedia, ”

http://en.wikipedia.org/wiki/Diagram, April 2011.
[3] SEVOCAB, “Software and Systems Engineering Vocabulary,”

http://pascal.computer.org/sev_display/search.action;jsession
id=989BD03B195021410505EFB99050FCFF, April 2011.

[4] Peter Chen, “Entity Relationship Modeling”,
http://www.devarticles.com/c/a/Development-
Cycles/Entity-Relationship-Modeling/, April 2011.

